
Formal Modelling of Separation Kernel
Components

Andrius Velykis and Leo Freitas

University of York, UK
andrius@velykis.lt, leo@cs.york.ac.uk

Abstract. Separation kernels are key components in embedded applica-
tions. Their small size and widespread use in high-integrity environments
make them good targets for formal modelling and verification. We sum-
marise results from the mechanisation of a separation kernel scheduler
using the Z/Eves theorem prover. We concentrate on key data structures
to model scheduler operations. The results are part of an experiment in
a Grand Challenge in software verification, as part of a pilot project in
verified OS kernels. The project aims at creating a mechanised formal
model of kernel components that gets refined to code. This provides a set
of reusable components, proof strategies, and general lemmas. Important
findings about properties and requirements are also discussed.

Keywords: Kernel, grand challenge, formal models, proof.

1 Introduction

Although software is ubiquitous, it is still perceived as an “Achilles’ heel” of
most systems, often being a serious threat. There is increasing evidence of the
successful use of formal methods for software development. In [22], 62 indus-
trial projects over 20 years are discussed. The survey explains the effect that
formal methods have on time, cost, and quality of systems and how their ap-
plication is becoming cost effective, hence easier to justify, not as an academic
pursuit or legal requirement, but as a business case. By the use of mathemat-
ical analysis, formal methods enable accurate definition of a problem domain
with capability of proving properties of interest. Formal methods application
usually produces reliable evidence for errors that are fiendishly difficult to catch.
Industrial and academic researchers have joined up in an international Grand
Challenge (GC) in Verified Software [21], with the creation of a Verified Software
Repository (VSR) with two principal aims: (i) construction of verified software
components; and (ii) industrial-scale verification experiments to drive future re-
search in the development of theory and tool support [2].

This paper is part of a pilot project within the GC in modelling OS kernels.
It summarises work done in [19]. The project follows work on modelling smart-
cards [12] and flash memory file stores [8]. Our objective is to provide proofs
of the correctness of a formal specification and design of kernels for real-time

A. Cavalcanti et al. (Eds.): ICTAC 2010, LNCS 6255, pp. 230–244, 2010.
c○ Springer-Verlag Berlin Heidelberg 2010

Formal Modelling of Separation Kernel Components 231

embedded systems. We start from Craig’s formal models of OS kernels [6], and
take into account separation kernel requirements set out by Rushby [15] and in
the US National Security Agency’s Separation Kernel Protection Profile [18].

We focus on formalisation of data structures needed by an abstract spec-
ification of a separation kernel scheduler, its main operations and algorithms.
Our long experience with the Z notation [20] and one of its theorem provers
(Z/Eves [16]) is well aligned with Craig’s original model [6] also developed in
Z, as well as existing resources in the VSR. Kernel development work is facil-
itated by reusing modelling concepts and proof tactics of mechanising simple
kernel components (e.g., basic types and the process table) from [10]. A com-
plex separation kernel process table adds process separation, external identifiers
and other structures to address architecture and security requirements. While
the process queue is shared with minor differences between both kernels, the
shedulers are architecturally different. The increased complexity and structural
differences affect associated proofs — although some lemmas can be reused, in
general the proofs are different in both kernels and thus both contribute dif-
ferent verified components to VSR. With mechanisation and formal modelling
we upgrade Craig’s original separation kernel model from [6] by: improving the
specification adding missing invariants and new security properties; verifying
API robustness and model correctness in general; etc. Note that all details of re-
sults presented in this paper, analysis, justification as well as formal specification
and proof scripts, are available in [19].

We briefly set the kernel verification scene in the next section. Section 3
presents a case study, which involves mechanisation of key data structures for
the kernel’s scheduler: a process table that keeps track of user and device process
information; a process queue used by scheduler operations and algorithms; the
scheduler invariant itself; and proved properties of interest. In Section 4, we
reflect on our results by giving some measures. Finally, Section 5 sums up our
findings and sets the agenda for future work.

2 Background

Craig’s book on kernels [6] includes Z specifications and refinement of simple
and separation kernels developed as an exercise that is beyond academic. It
serves as a starting point for our project. The objectives are to demonstrate
feasibility of top-down development using formal specification and verification
with refinement to code (i.e., correctness by construction) [11]. Craig’s original
models are typeset by hand and include several manual proofs. We augment
the specification that uses Z notation [20] by mechanising it with a theorem
prover [16] in order to more precisely record its correctness arguments from
hand-written proofs. Given Craig’s expertise as a kernel developer, we try to keep
as faithful as possible to his original designs, only changing it at places where
identified mistakes have been made. All results [19], including models, lemmas,
etc. are being curated in the VSR [2] at SourceForge (vsr.sourceforge.net).

vsr.sourceforge.net

232 A. Velykis and L. Freitas

Verification of OS Kernels. An OS kernel is key in coordinating all access
to underlying hardware resources like processors, memory, and I/O devices. Ap-
plication processes can access these resources via system calls and inter-process
communication. Kernel development has a reputation for being a complex task
for two prime reasons: (i) every system requires the kernel to provide correct
functionality and good performance; and (ii) the kernel cannot make (direct)
use of the abstractions it provides (e.g., processes, semaphores, etc.).

Microkernels for embedded systems are a suitable target for formal verifica-
tion due to their small size and controlled environment. Such verification is an
industrial-scale exercise that is undertaken in a number of academic and commer-
cial projects. We identify two different approaches to verification. One starts with
an existing kernel (possibly code or concrete design) and verifies its properties
bottom-up, e.g., Microsoft’s hypervisor — a separation kernel aiming at virtu-
alisation of hardware [5]. The project has verified existing C and assembler code
for the functional correctness of kernel memory models. Within the GC, there
is a recently started pilot project on the verification of FreeRTOS open-source
kernel [3] that involves scientists in the UK and India. Alternatively, a top-down
approach starts with the formalisation of high-level requirements that then gets
refined (as formally as possible) to code. This approach allows reasoning about
kernel properties without being bound to an existing implementation. Its ap-
plication can be seen in parts of the commercial project L4.verified [13], which
formalises and verifies a high-performance general-purpose microkernel; and in
the work on Xenon [14], a security hypervisor based on the Xen OS. The former
uses Isabelle/HOL to specify, abstract and verify properties of a Haskell proto-
type of the kernel, whereas the latter is using Z and CSP to model the C code.
With properties proved about such formal model, one can then apply refinement
techniques to obtain concrete designs. Furthermore, abstract components facil-
itate development of new kernel structures, where their properties are proved
without an implementation. Our project aims to create fully generic abstract
kernel models and refine them to code with good levels of automation — this
paper contains results from the beginning of this large scale effort.

Simple kernel components based on [6] have already been mechanised in [10,9].
There we found interesting issues, including missing and hidden invariants. Al-
though Craig’s models have great insight from an OS engineer in necessary un-
derlying data types, a series of mistakes are introduced, both clerical and more
substantial in design decisions. Craig’s work also includes a C implementation for
Intel’s IA32 architecture that is carried out using data refinement and the Z re-
finement calculus [20]. This paper continues with separation kernel components,
in particular the scheduler, as reported in [19].

Separation Kernel. Separation kernel architecture was first introduced by
Rushby [15], where different kinds of processes are isolated to achieve desirable
security properties. The US National Security Agency has produced a Separa-
tion Kernel Protection Profile (SKPP) under the Common Criteria certification
framework to define requirements for separation kernels used in environments

Formal Modelling of Separation Kernel Components 233

that require high-robustness [18]. SKPP also includes the kernels’ interaction
with both hardware and firmware platforms, hence these components also need
to be verified. In here, we assume them as trusted entities verified elsewhere. In
our work, we follow the formal models by Craig [6], which are relatively close to
the SKPP requirements, as extensively discussed in [19]. Craig assumes the kernel
to be running on an Intel’s IA32/64 platform, and verbally states that memory
partitioning and context switches are achieved by the underlying hardware. We
need to specify this mathematically in order to support statements spanning the
kernel and the hardware. The main concerns are to ensure separation of process
address spaces: they must execute in isolated memory partitions; inter-process
communication is only allowed via vetted communication channels; and so on.
To achieve this, one needs to have memory partitioning in the kernel, where each
process is allocated a dedicated area. Process communication is established via
message passing over a special shared memory area. Unauthorised communica-
tion between processes is prevented by having external process identifiers, which
are translated into internal representations within the kernel. The requirement
to have process execution separation is achieved by a non-preemptive scheduler.
It ensures only a single component is active at each given time. Craig models
device processes as trusted code running within the kernel. Our work here is
to mechanise, polish, and improve Craig’s original model. Also, we know from
collaboration that the modelling of the Xenon hypervisor [14], which is a much
more complex kernel, is benefiting from ideas presented here and in [19].

3 Case Study

Separation kernel formal model development is a significant undertaking due to
the high number of different components and requirements, as well as specific
domain knowledge involved. This case study presents some details on mechani-
sation, modelling and verification of a separation kernel specification, based on
hand-written models by Craig [6]. The mechanisation has four stages: (i) pars-
ing and typechecking Z for syntactic type consistency; (ii) domain and axiomatic
checking that shows well-formedness of expressions (e.g., functions are applied
within their domains), and soundness of axioms; (iii) feasibility lemmas provid-
ing an existence proof for the initial state, and operation preconditions showing
API robustness and correct state invariant; and finally (iv) proving conjectures
that represent properties of the model. We also summarise key data structures
in the scheduler like a process table and scheduling queue. This paper focuses
on formal modelling, hence details of the mechanical proof process are omitted
here. Instead, all theorems, proofs and complete analysis are available in [19]. A
very detailed report on proving Z specifications with Z/Eves is provided in [7].

3.1 Process Table

A core data structure in our separation kernel is a process table (PTab) that
stores all process information. Previous work on simple kernels [10] has been

234 A. Velykis and L. Freitas

reused, with additional variables and invariants to address process separation
security requirements. All kernel processes are referenced by their identifiers, as
bounded non-empty range type of PIDs. Also, to distinguish between user pro-
cesses and “trusted” platform code (i.e., device processes), we use Z free types
(PTYPE ::= uproc | dproc), which in this case are enumerated type construc-
tors that form a partition. This means that uproc and dproc are distinct, and
the only elements of the set PTYPE . Outside the kernel, processes are refer-
enced by external identifiers to prevent unauthorised access to internal kernel
resources. Craig [6, Chap. 5] suggests having an unbounded number of external
user process identifiers UPID , and a limited number of device identifiers Dev ,
since in embedded environments device configuration is known from the start.

PTab
used , free : F PID ; nup : UPID ; dmap : Dev ↦� PID ; pidext : PID ↦→ UPID
ptype : PID ↦→ PTYPE ; extpid : UPID ↦→ PID ; state : PID ↦→ PSTATE

free = PID ∖ used ∧ used = dom state = dom ptype ∧ pidext = extpid∼

∃ dprocs, uprocs : FPID ∙ dprocs = ptype∼(| { dproc } |) = ran dmap
∧ uprocs = ptype∼(| { uproc } |) = ran extpid
∀ u : UPID | u ≥ nup ∙ u /∈ dom extpid

A process table (PTab) is specified using a Z schema: a labelled record data struc-
ture with invariants. PTab is similar to the one for a simple kernel in [10]: it has
finite sets (F) used and free for process identifiers (PID) that are disjoint; and
it specifies partial function (↦→) mappings for each used PID to access var-
ious related process information. Functions ptype and state specify type and
process-state information for each process, respectively. Available process states
are defined by the free-type PSTATE like PTYPE above, and omitted here.
Process table invariants require these mappings to exist for all used processes
(i.e., functions recording process information are total on used).

External identifiers are different for each process type and stored in separate
structures. Device numbers are stored in dmap: a partial injective (↦�) relation-
ship, which guarantees a one-to-one mapping between device numbers Dev and
kernel device process PIDs. For user process identifiers, we have functions extpid
and pidext as the inverse (∼) of each other to allow simple bi-directional identi-
fier queries. Some ambiguity while modelling a system in Z is common practice,
providing it aids clarity and simplify proof goals. Because dmap, extpid — and a
few other process information mappings not included above — are used for pro-
cesses of different types, just like with used PIDs for state and ptype domains,
we need to identify device and user-process sets. Since these sets are images of
ptype for each process type, we define sets dprocs and uprocs locally using an
existential quantifier for device and user processes, respectively. These sets are
linked with the range of their corresponding functions — as well as the domain of
the few mappings not shown here. Finally, nup defines next available UPID for
user processes. Proving precondition of PTab operations revealed the necessity
for ensuring a future unused UPID (u /∈ dom extpid) for all UPIDs beyond (and

Formal Modelling of Separation Kernel Components 235

including) nup, hence the last invariant. More details on how this appeared are
given below, and a full account is given in [19, Chap. 6].

Properties. PTab specifies an injective relationship between device process
external (Dev) and internal (PID) identifiers. A corresponding property of user
process identifiers (UPID) can be formulated as

PTab ⊢ extpid ∈ UPID ↦� PID ∧ pidext ∈ PID ↦� UPID (1)

Given a PTab state (i.e., there exists an instance of the state where its invari-
ant holds: we have a feasible model), both extpid and pidext are injective (↦�),
thus for each internal user process PID , there exists a unique external user pro-
cess UPID , and vice-versa. We proved it as a theorem in Z/Eves using current
PTab’s invariants. This way we achieve separation of concerns, as the theorem
can be used later in proofs. As a redundant invariant in PTab, it could unnec-
essarily complicate future proofs, e.g., extra proofs are needed per redundant
property. We formalised various operations for process identifier management,
such as process allocation and deletion.

Process Table Refinement. Mechanisation involves refinement of data struc-
tures to accommodate proofs and model changes. A detailed case study of PTab
refinement is given in [19, Chap. 6] and describes the evolution of the original
schema in [6, p. 220] to the final form as shown above. Refinement relationships
are proved in [19] for each step to ensure that the original specification is still
satisfied, e.g., PTab ⇒ PTabv4 ⇔ PTabv3 ⇔ Equivalence (⇔) changes rep-
resent specification refactoring without changing the original meaning, whereas
a refinement Spec ⊑ Design, here as reverse implication Design ⇒ Spec, guaran-
tees that the stronger schema satisfies all properties of the one it refines, and is
used to correct mistakes and add missing invariants. Some examples illustrating
different refinement steps are given below (details and all proofs are in [19]).

Complicated mathematical constructs can be replaced with more suitable Z
idioms for theorem proving without compromising corresponding PTab schema.
Originally the set of device processes was defined as set comprehension (middle)

dprocs = { p : PID | p ∈ used ∧ ptype(p) = dproc } = ptype∼(| { dproc } |) (2)

which is straightforward enough to understand: dprocs is a set of known (used)
PIDs with dproc type, as required. However, set comprehension expressions are
difficult to reason about in proofs, as they require pointwise extensionality proofs
(i.e., to show that every element in the set satisfies its invariants). Instead, if we
could characterise the same relationship with higher-level operators, we would
then be likely to have higher automation levels. So, (2, middle) can be refactored
as the relational image of the of inverse of ptype (2, right). Function ptype maps
PIDs to their process types (PTYPE). Inverting it, we get a relation (set of
pairs) between PTYPE and their corresponding PIDs, which might no longer
be functional as more than one identifier might be of user or device type. Then,

236 A. Velykis and L. Freitas

we apply relational image (R(| S |)) over this resulting set of pairs, which gives
a set of values in ptype for all its dproc-typed members. Thus, (2, right) gives
all PIDs of dproc type in ptype as set dprocs. The advantage of this equivalent
formulation is that it can take advantage of a series of lemmas about inverse and
relational image from the Z mathematical toolkit [17], which then leads to more
automatic proofs. The equality in (2) enables us to prove equivalence between
the schemas affected by this change (i.e., PTabv4 ⇔ PTabv3 in [19, p. 46]).

Failed precondition proofs during the mechanisation of a deterministic UPID
allocation algorithm by Craig [6, p. 222] revealed a missing invariant. The mono-
tonic increment of new UPIDs did not ensure that new identifiers are unused
by the process table. We refine the PTabv4 schema (i.e., PTab ⇒ PTabv4) by
adding an invariant (3) requiring the next and subsequent UPIDs to be available.

∀ u : UPID | u ≥ nup ∙ u /∈ dom extpid (3)

Without it, one could not prove that UPID allocation operations kept the after
state of extpid values being injective. This is an expected, yet missing invariant
both in the Z models and in the English-written requirements, rather than a
cosmetic model change. We benefit from streamlined specification, corrected
invariants and clarity of requirements in the refined PTab schema, while the
proofs show schema conformity to the original specification. The full account on
PTab refinement is given in [19, Chap. 6].

3.2 Process Queue

The separation kernel scheduler stores waiting processes in process queues to
ensure correct execution order. We model them with operations to access and
manage queue elements, such as querying for elements, enqueue and dequeue
processes to be scheduled, and so on. The resources being queued are process
identifiers (PIDs) from the underlying process table (PTab). During these queue
operations PTab components are kept read-only.

The next (horizontal) schema PQ defines the queue as an injective sequence
of process identifiers: it is a function from ordered pairs of indexes started from
one to unique PID values (i.e., akin to N1 ↦� PID). Only elements from the
given PTab’s used set are allowed in the queue, as indicated by the subset (⊆)
constraint over the sequence’s range of PIDs queued. In Z, schema inclusion like
PTab is used to factor complex data structures into its constituent components.

PQ ̂︀= [PTab; pr : iseq PID | ran pr ⊆ used] PQInit ̂︀= [PQ ′ | pr ′ = ⟨⟩]

The queue is initialised as empty in PQInit . In Z, dashed variables like pr ′ rep-
resent operation’s after state, where PQ ′ represents dashed components from
PQ . Note that in PQInit the underlying PTab is not restricted during PQ ini-
tialisation, hence allowing PTab to be initialised before (e.g., with a suitable
PTabInit). Such need arises when PQInit is used in scheduler initialisation (see
Sect. 3.3). Because we require only an existence proof for the feasibility of such
initial state, this arrangement is just right (e.g., ∃PQ ′ ∙ PQInit). We need two

Formal Modelling of Separation Kernel Components 237

separate process queues for user processes and devices. To avoid name clash, a
DQ schema is defined by renaming the queue sequence variable pr to dv as

DQ ̂︀= PQ [dv/pr] DQInit ̂︀= PQInit [dv ′/pr ′]

Notice that the underlying PTab for both PQ and DQ remains the same. This
neat alignment/reuse of components is a great feature of the Z schema calcu-
lus [20, Chap. 11]. Craig suggests an injective sequence [6, Sect. 3.4] in PQ to
ensure that no process can be queued multiple times. Injective sequence up-
dates are tricky because they require uniqueness of sequence range elements,

yet sequence operators (e.g., concatenation a) are not aware of such restric-
tions. This requires additional effort during precondition proofs to guarantee
PID queueing uniqueness. For instance, to concatenate an element x to a se-

quence t one just needs to say t ′ = t a ⟨x ⟩, whereas for a injective sequence s,
it is also necessary to show that x is unique in s (i.e., x /∈ ran s) like

∀ s : iseq X ; x : X ∙ x /∈ ran s ⇒ s a ⟨x ⟩ ∈ iseq X (4)

which is proved in [10]. Given a non-empty generic type X and an injective
sequence s, if an element x ∈ X is not mapped in s, then appending x to s
keeps the result injective. Lemmas like this have been reused across various pilot
projects, and form the basis of a general library, which is one of the outcomes
of the Grand Challenge: reusable components and proofs. Furthermore, process
queue is a generic kernel data structure and is used within other components
(e.g., semaphores in simple kernel [6, Sect. 3.7]). Different kernel process tables
mandate redoing PQ proofs, however, proof structures and toolkit lemmas are
successfully reused, hence minimising implementation effort. Further reuse is
facilitated by collecting such verified components in the VSR.

3.3 Scheduler

Like in [15], our separation kernel employs a round-robin scheduler. It is non-
preemptive, hence a running process can only suspend voluntarily or terminate.
Such approach is chosen for its simplicity and current use in embedded sys-
tems. Scheduler includes operations for making a process ready, suspended, or
to terminate processes. Synchronous device I/O in the kernel is achieved by the
scheduler executing device processes at a higher priority than user processes, so
that when a device call is performed, a corresponding device process is executed
to handle the call, while the user process suspends and waits for a reply.

Schema Sched contains two ready-queues for each process type: PQ and
DQ . Two special (distinct) identifiers are used for the idle (ip) and current (cr)
processes. The former is used when no other processes are scheduled, whereas
the latter stores the process currently executing. We also define a component to
aggregate all queued process identifiers in a single set (queued). This auxiliary
term allows us to write simpler expressions, entailing easier proofs later.

238 A. Velykis and L. Freitas

Sched
PQ ; DQ ; cr , ip : PID ; queued : P PID

queued = ran pr ∪ ran dv ∧ { cr , ip } ⊆ used ∧ cr /∈ queued ∧ ip /∈ queued
ran pr ⊆ ptype∼(| { uproc } |) ∧ ran dv ⊆ ptype∼(| { dproc } |)

The state invariant has that the current and idle processes are known to the
kernel process table (i.e., within used), and must not be queued for execution
— no process can be executing and waiting at the same time. We ensure that
processes of different types are queued accordingly: pr for (uproc) user processes,
and dv for (dproc) kernel device processes. We use subset containment over
the relational image of each function.This specification of the scheduler is a
substantial upgrade from Craig’s [6, Sect. 5.6]. The addition of a reference to
PTab via PQ enabled the specification of process properties. Thus, we were able
to convert informal requirements given in English in the book: that PQ is for
user processes and DQ is for devices, for instance. Also with the invariants on cr ,
ip being known (in used) PIDs only, we could specify and prove kernel security
properties, and define robust operations for the scheduler (i.e., operations that
are proved to account for all behaviours as successful and exceptional cases).

We initialise the scheduler with empty queues and an idle process running
that is passed as (p?) an input variable. In Z, inputs are tagged with a question
mark. We keep the modular approach for kernel components and reuse previously
defined operations: during scheduler initialisation, queues and process table are
initialised by corresponding operations like PQInit .

SchedInit ̂︀= [Sched ′; PQInit ; DQInit ; p? : PID | ip′ = p? ∧ cr ′ = ip′]

SchedPTabInit ̂︀= PTabInit o
9 (AddIdleProcess ∧ SchedInit [ip!/p?]) ∖ (ip!, u!)

Using PTab operations defined elsewhere [19, Chap. 6], we can construct full
initialisation of PTab and Sched as SchedPTabInit . We use schema composition
for the sequential execution of operations. In Z, the schema composition (S o

9 T)
operator uses the after state of S as the before state of T , with the after state
of T being the overall after state, and similarly for the before state of S . That
works well providing the after state components of S is the whole of the before
state of T (i.e., we have homogeneous composition). This models a process
table that is initialised first by PTabInit , then an idle process is allocated by
AddIdleProcess (i.e., a user process allocation operation in [19, p. 57]), and
passed into scheduler initialisation SchedInit . Finally, output variables ip! and
u! are hidden (i.e., existentially quantified) to avoid exposing them outside the
operation. It neatly reuses definitions plumbed with the schema calculus, which
are equivalent to the following expanded schema.

SchedPTabInitExpand ̂︀= [Sched ′ | used ′ = { ip′ } ∧ nup′ = 2 ∧ cr ′ = ip′ ∧
pr ′ = dv ′ = dmap′ = ∅ ∧ extpid ′ = { 1 ↦→ ip′ } ∧ ptype ′ = { ip′ ↦→ uproc } ∧ ..]

It shows state initialisation after all updates take place. The idle process ip′ is
allocated with expected initial values and passed into the scheduler for execution.

Formal Modelling of Separation Kernel Components 239

3.4 Scheduler Operations

Abstract data type operations in Z are specified as a relation between before and
after states. This includes both successful and exceptional cases. Typically this is
given as a disjunction of schemas. Usually we negate the successful case precon-
dition, where each error case accounts for some of the negated predicates, such
that the overall precondition equates to true, hence leading to a robust interface.
This is the so-called Oxford style of Z [20]. A common and simple solution for
error handling is to report the error whilst keeping the state constant. Our sepa-
ration kernel model uses an errors with memory [1, Sect. 18.3] approach to store
the error message in between operations. This way a subsequent operation can
check whether the kernel is in a valid state. Furthermore, Craig [6] defines error
cases to kill the kernel via an interrupt as a simplistic, albeit blunt an approach
for secure exit. Nevertheless, this interrupt handling is not modelled formally.
To aid this we need to extend it by defining and proving kernel error handling
security properties. Note that an interrupt-like error handling approach, with
state validation, recovery and logging, has been successfully modelled in Mon-
dex project [12]. Detailed description of kernel error handling is given in [19,
Chap. 5], while here we present a short summary of key operations only.

For example, a process queueing operation EnqPQOk performs the sequence
concatenation (queueing) in the successful case. The error cases, such as when
the process is already queued (ErrQueued), are defined separately and then
disjoined with the successful case. In Z, 𝛥PQ indicates both PQ and PQ ′ are
included, yet without any constrains over state variables. 𝛯PQ is just like 𝛥PQ
but requires everything in PQ to be kept constant.

EnqPQOk ̂︀= [𝛥PQ ; 𝛯PTab; p? : PID | pr ′ = pr a ⟨p?⟩]
ErrQueued ̂︀= [𝛯PQ ; 𝛥ErrV ; p? : PID | p? ∈ ran pr ∧ serr ′ = errqueued]
EnqPQ ̂︀= (EnqPQOk ∧ SysOk) ∨ ErrQueued ∨ . . .

A process is added for scheduling by “readying” it. This means it must be en-
queued and its state in PTab must be set to psready . Such queueing must keep
everything else constant (i.e., queueing happens before scheduling). We reuse
EnqPQ operation to perform the actual queueing in EnqSchedOk .

EnqSchedOk ̂︀= [𝛥Sched ; EnqPQ | cr ′ = cr ∧ ip′ = ip ∧ dv ′ = dv]
EnqUserSched ̂︀= EnqSchedOk ∨ ErrNotUserPID ∨ . . .

Schema EnqUserSched models queueing a user process without updating the
current, idle or device processes. The operation performs a number of checks to
ensure that all invariants are satisfied. Included schema EnqPQ has a robust
specification for queue-level queueing with: successful cases; case when a process
is unknown to the kernel (e.g., PID not in used); or case when it is already
queued (e.g., PID in pr range). Since no queue operation alters PTab (𝛯PTab),
EnqPQ ensures that the underlying process table does not change as a result of
EnqSchedOk . Scheduler invariants give rise to additional error cases: a process
can have the wrong type; it might already be running; the idle process cannot

240 A. Velykis and L. Freitas

be queued; and so on. These error cases are defined to create a total enqueue
operation EnqUserSched . The complete “readying” operation MakeReady en-
queues and sets process state. We use schema composition (o

9) to update the
pstate function in PTab for a given process (p? ∈ PID) to psready in SetReady .

MakeReady ̂︀= EnqUserSched o
9 ((IsSysOk ∧ SetReady) ∨ ErrKeepFail)

The input variable comes from EnqPQ . Note that process state changes only if
the enqueue succeeds, hence we check for expected system state with IsSysOk . If
EnqUserSched does fail (i.e., either via EnqPQ errors, or by its own error cases),
the error is propagated by ErrKeepFail . An analogous operation has been defined
for device processes. In [4], these schemas are used as APIs for the definition of a
parallel/distributed scheduling algorithm that considers the behavioural aspects
of the specification, rather than what is happening in the data structures.

The main scheduler function is to determine and execute processes in an ap-
propriate sequence. As mentioned, device processes have priority over user pro-
cesses, while the idle process is run when nothing else is scheduled. We model
this via separate operations, later on conjoined to represent the overall schedul-
ing algorithm. All operations follow the same pattern: a process is selected for
execution and its state is set via a PTab operation (SetRunning).

RunIdleNext
𝛥Sched ; SetRunning [ip/p?]; SysOk

dv = pr = ⟨⟩ ∧ cr ′ = ip ∧ ip′ = ip ∧ pr ′ = pr ∧ dv ′ = dv

Since the idle process is never queued in the scheduler, running it does not re-
quire updating scheduler queues, hence we can specify everything with operation
RunIdleNext . Like SetReady , SetRunning updates pstate for a given p? input
to psrunning , which in this case is the idle process ip. This operation can only
be executed when both process queues dv and pr are empty. The operation sets
the idle process as current (cr ′ = ip), sets it to running, and does not change
anything else. Finally, SysOk signals that operation has been successful. User
and device scheduling operations are similar in that they both take the first
element in a respective queue and change its state to running. For dequeue,
corresponding operations for device and user processes queues are used.

SchedUserNext ̂︀= [𝛥Sched ; DequeuePQ | dv = ⟨⟩ ∧ pr ̸= ⟨⟩ ∧
cr ′ = p! ∧ ip′ = ip ∧ dv ′ = dv]

RunUserNext ̂︀= (SchedUserNext [n/p!] o
9 SetRunning [n/p?]) ∖ (n)

Schema SchedUserNext sets process p!, which is output by DequeuePQ opera-
tion, as the current process. Note that DequeuePQ is responsible for updating
user process queue pr ′. The scheduling algorithm is specified in the operation
invariants: output user process p! is scheduled when device queue dv is empty,
and user process queue pr is not. RunUserNext appends the SetRunning oper-
ation to the scheduling algorithm. Here auxiliary variable n is used to link the

Formal Modelling of Separation Kernel Components 241

output parameter from one operation to the input parameter of the next. We
can formulate and prove statements about scheduling operation properties to
improve assurance in them, e.g., we show that RunUserNext always executes
the first element in user process queue (i.e., RunUserNext ⊢ cr ′ = head pr). The
device scheduling operations SchedDeviceNext and RunDeviceNext are specified
in an similar manner with DequeueDQ and with the precondition that the de-
vice queue is not empty (dv ̸= ⟨⟩). The complete API for any scheduler state
implements the scheduling algorithm by disjoining all top-level operations.

SchedNext ̂︀= RunIdleNext ∨ RunUserNext ∨ RunDeviceNext

We proved that the precondition of this operation is true, meaning that it can be
executed for any scheduler state: it is a robust operation that will always succeed.
Even more, we proved a conjecture to show that the operation never fails: it will
always return the system call was okay (e.g., SchedNext ⊢ serr ′ = sysok). The
composing operation invariants ensure that the total operation SchedNext is
never in a state where queueing error case preconditions may apply. Obviously,
all that did not fall into place neatly. It was the result of a well-crafted model,
followed by the ruthless scrutiny of the theorem prover, alongside appropriate
guidance in the process via useful lemmas for acceptable levels of automation.

With the definitions of enqueue and scheduling available, we can create a
suspend operation. A process is never preempted, but can suspend voluntarily to
relinquish execution to other processes. One of the cases when this may happen
is during inter-process communication: a process sends a message to another
process and suspends itself to allow the other process to eventually execute
and handle / reply the message. The suspend operation runs the next available
process and places the caller back in the process queue. This is specified by
reusing SchedNext and MakeReady operations.

RequeueUserProcess ̂︀= (SchedNext o
9 MakeReady)

Both SchedNext and MakeReady are robust (i.e., precondition is true), and
SchedNext constrains all variables in Sched referenced in MakeReady (i.e., we
have a homogeneous operation), hence we can safely combine them using schema
composition. That is, since we have already shown SchedNext will always suc-
ceed, it is not necessary to check if the system is in a valid state before executing
MakeReady . Nevertheless, as MakeReady can fail due to a queueing error, the
full operation is not atomic: we could not recover the scheduler’s state in case
MakeReady fails. The need for atomicity of such operations is discussed in [4].

The scheduler reuses a large number of operations from PTab and PQ . The
nested schemas and multiple error cases create complex operations that can be
compactly presented using the schema calculus. Yet, expanding all definitions
could lead to rather tricky proof steps, and a good amount of lemmas need to
be in place if one is to complete the proofs with acceptable levels of automation.
Fortunately, as it often happens [10,9], such lemmas are not only repeated, but
also reusable from previous experiments, which minimises the overall effort.

242 A. Velykis and L. Freitas

4 Discussion

General outcomes of the separation kernel component mechanisation confirm
the findings of the previous projects [10] — proper tool support and a verifica-
tion framework build confidence in the formal specification. Syntax errors are
eliminated, model feasibility and API robustness are verified, and missing in-
variants to guarantee correct operations are found. The formal model is fully
proved mechanically — the proofs help establishing the correctness of the Z
specification. The validity of the kernel model must be demonstrated by proving
architectural and security properties. Our work significantly improves Craig’s
scheduler model. By translating verbal requirements to mathematical invariants
and improving design of the specification, we are able to formulate and prove
certain properties about the components (e.g., the scheduler deadlock analysis
below). The main separation kernel properties of process separation (e.g., mem-
ory partitioning and communication via established channels only), however,
span a number of kernel components, some of which have not been mechanised
yet. Thus these properties must be analysed and proved as a future exercise.

Scheduler Deadlock Analysis. Using invariants in scheduler schema Sched ,
we prove that kernel starvation by queueing all known processes, hence none
would be available for execution, is impossible: i.e., ∀Sched ∙ queued ⊂ used
(Sect. 3.3). Nevertheless, a deadlock can occur, when, for example, the initial
process (which creates other processes) suspends without “readying” other pro-
cesses. In this case, the idle process would be running with all processes queued.
Even so, this functionality is specific to the process, not the kernel, and we do
not formally model the running processes themselves.

Other Separation Kernel Components. The process table, queue and
scheduler are core data structures within a separation kernel. The next step is
to mechanise and model other components, such as messaging or memory man-
agement, to achieve and verify full separation of processes. We have laid the
foundations for that: external process identifiers can be allocated and translated
in the process table to avoid exposure of kernel internal representation; process
schedule and suspend functionalities are the core of the inter-process messag-
ing subsystem. The formal model of underlying hardware platform would go
beyond Craig’s original model, but would allow proving memory access restric-
tions. Craig assumes hardware exceptions [6, p. 204], yet does not formally spec-
ify them. A formal model for interrupts would benefit from similar experience
with Mondex smartcards [12].

Proofs & Benchmarks. In [19] we have already mechanised close to five sep-
aration kernel specification sections (out of 12 [6, Chap. 5]). The remaining part
constitutes of memory management and messaging components, as well as kernel
interface spanning all components. Our mechanisation of three core components

Formal Modelling of Separation Kernel Components 243

have a total of 263 paragraphs comprising schemas, types, and axioms, with
∼40% of these being related to operation feasibility proofs (i.e., operation pre-
conditions). These generated 254 verification conditions: ∼50% are about model
feasibility; 35% are about proof automation rules in Z/Eves; and ∼10% are
related to model refactoring. Also, we proved 12 properties of interest (∼5%),
several of which have been presented in the case study (Sect. 3). Furthermore,
the general theories created by other pilot projects contain well over 120 reusable
theorems about various mathematical data types [9]. Separation kernel proofs
were discharged with over 1300 proof commands, 23% of which require creative
steps involving quantifier’s witnesses, or knowledge on how the theorem prover
works. The remaining 77% involved proof exploration steps of moderate diffi-
culty and straightforward/blind tasks, given the right model. These numbers
enable comparison with previous GC pilot projects, which accumulated simi-
lar information. The Z mechanisation of Mondex [12, p. 117–139] has 25% less
paragraphs, yet has over 350% more proof: that is largely due to the underlying
refinement calculation involved. Various automation lemmas from Mondex were
reused. This improved our share of push-button proof steps to 40%, whereas
they were about 27% in Mondex. This suggests that Mondex proofs were more
difficult, yet the separation kernel proofs automation levels benefited from that
work. Such difference is expected as we did not do any refinement proofs yet: it
will be worthwhile comparing those later. The work presented here took ap-
proximately 900 man-hours, which also included the first author mastering the
Z/Eves prover without previous experience, and writing up the thesis in [19].

5 Conclusions

The Grand Challenge’s pilot projects inspire us to model and verify various
application domains. One aim beyond actual mechanisation is to make it easier
for the next team who want to work with kernels. For that, we provide data
types and useful lemmas that are central to modelling kernel scheduling. Basic
verified data structures were developed for a simple kernel [10], with a collection
of general lemmas from the Verified Software Repository (VSR) being reused [9].

In this paper we improve the specification and formal model of the separa-
tion kernel in [6]. Separation kernel data structures address security requirements
and are more complex than their simple kernel counterparts. Most of the work
consisted of identifying properties about data types, calculating preconditions
for (i.e., feasibility of) each operation, and verifying everything via formal proof
along the way. This mechanisation revised and improved the specification of the
process scheduler and its associated components: it corrected modelling errors
on data types, as well as missing error cases of operations, and mistaken invari-
ants from [6], some of which were discussed here (and discussed in full in [19]).
Together with new extracted general lemmas and detailed verification process
report (all available in [19]), we believe this to be an important contribution in
building theories for mechanised formal modelling of OS kernels.

244 A. Velykis and L. Freitas

Future Work. We aim to complete the formal kernel model and prove the
process separation, as well as to perform formal refinement of kernel components
to a concrete model and implementation code. We intend to explore how such
kernel model is used in other projects [14], and different scheduling algorithms [4].

Acknowledgements. We are grateful to Iain Craig for his useful account of
formal kernel specification and modelling. The first author is now employed by
the EPSRC (EP/H024050/1) AI4FM project at Newcastle University, UK.

References

1. Barden, R., et al.: Z in Practice. Prentice Hall (1994)
2. Bicarregui, J., et al.: The verified software repository. Formal Aspects of Comput-

ing 18(2) (2006) 143–151
3. Berry, R.: A free real-time operating system (FreeRTOS)
4. Boerger, E.: Refinement of distributed agents. In: Dagstuhl Seminar 09381. (2009)
5. Cohen, E., et al.: VCC: A practical system for verifying concurrent C. In: Theorem

Proving in Higher Order Logics. Volume 5674 of LNCS., Springer (2009) 23–42
6. Craig, I.D.: Formal Refinement for Operating System Kernels. Springer (2007)
7. Freitas, L.: Proving Theorems with Z/Eves. T. Report, University of Kent (2004)
8. Freitas, L., et al.: Posix and the verification grand challenge: A roadmap. In: 13th

ICECCS, IEEE Computer Society (2008) 153–162
9. Freitas, L.: Extended Z mathematical toolkit – Verified Software Repository. Tech-

nical Report CRG13, University of York (2008)
10. Freitas, L.: Mechanising data-types for kernel design in Z. In: Formal Methods:

Foundations and Applications. Volume 5902 of LNCS., Springer (2009) 186–203
11. Hall, A., Chapman, R.: Correctness by Construction: Developing a Commercial

Secure System. IEEE Software 19(1) (2002) 18–25
12. Jones, C., Woodcock, J., eds.: Formal Aspects of Computing: Special Issue on the

Mondex Verification. Volume 20:1. Springer (2008)
13. Klein, G., et al.: seL4: Formal verification of an OS kernel. In: 22nd ACM Sympo-

sium on Operating Systems Principles (SOSP), ACM (2009)
14. McDermott, J., Freitas, L.: Formal security policy of Xenon. In: FMSE. (2008)
15. Rushby, J.M.: Design and verification of secure systems. ACM SIGOPS Operating

Systems Review 15(5) (1981) 12–21
16. Saaltink, M.: Z/Eves 2.2 User’s Guide. Technical report, ORA (1999)
17. Saaltink, M.: Z/Eves 2.2 Mathematical Toolkit. Technical report, ORA (2003)
18. SKPP: U.S. Government Protection Profile for Separation Kernels in Environments

Requiring High Robustness, v.1.0.3. National Security Agency (June 2007)
19. Velykis, A.: Formal modelling of separation kernels. Master’s thesis, Department

of Computer Science, University of York (2009)
20. Woodcock, J., Davies, J.: Using Z. Prentice-Hall (1996)
21. Woodcock, J.: First steps in the verified software grand challenge. IEEE Computer

39(10) (2006) 57–64
22. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal Methods: Prac-

tice and Experience. ACM Computing Surveys 41(4) (2009)

	Formal Modelling of Separation Kernel Components
	Introduction
	Background
	Case Study
	Process Table
	Process Queue
	Scheduler
	Scheduler Operations

	Discussion
	Conclusions

