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Abstract. It is now widely understood how to write formal specifi-
cations so as to be able to justify designs (and thus implementations)
against such specifications. In many formal approaches, a “posit and
prove” approach allows a designer to record an engineering design deci-
sion from which a collection of “proof obligations” are generated; their
discharge justifies the design step. Modern theorem proving tools greatly
simplify the discharge of such proof obligations. In typical industrial ap-
plications, however, there remain sufficiently many proof obligations that
require manual intervention that an engineer finds them a hurdle to the
deployment of formal proofs. This problem is exacerbated by the need to
repeat proofs when changes are made to specifications or designs. This
paper outlines how a key additional resource can be brought to bear
on the discharge of proof obligations: the central idea is to “learn” new
ways of discharging families of proof obligations by tracking one inter-
active proof performed by an expert. Since what blocks any fixed set
of heuristics from automatically discharging proof obligations is issues
around data structures and/or functions, it is expected that what the
system can learn from one interactive proof will facilitate the discharge
of significant “families” of recalcitrant proof tasks.

1 The challenge

The stimulus for this research has been observing engineers in industry using
“formal methods”. For example, in the DEPLOY project [24,19], engineers from
six companies attempted to use theorem proving tools. It became clear that the
number of proof obligations that were not discharged automatically presented a
disincentive for deploying formal specifications and design verification.

In a UK project known as AI4FM [23,4,6,5,13] we have set ourselves the
challenge of improving the effectiveness of formal methods by using Artificial In-
telligence (AI) approaches to remove some of the bottlenecks in the construction
of formal proofs.1 More specifically, we see scope for learning proof strategies
from experts.

1 The title of this paper plays on the jingoistic poem The Charge of the Light Brigade
by Tennyson which includes:

Theirs not to reason why,
Theirs but to do and die



The target of the project is the sort of proofs needed in typical justifications
of the design and implementation of software systems; it does not aspire to learn
how mathematicians prove deep theorems. This section explains the desirability
of meeting this challenge and our approach thereto; the body of the paper (Sec-
tions 2 and 3) presents an architecture for a system under construction and the
rationale for that model. Section 4 discusses the status of this ongoing research.

1.1 Setting out the challenge

Increasingly, organisations are recognising that formal descriptions of systems are
a useful intermediate step between informal requirements and detailed design.2

A crucial advantage of a system description in a tractable formal notation is that
it provides a basis for the construction of a correctness argument for design. A
stepwise process can therefore provide a chain of argument which shows that
an implementation (under assumptions about adherence to the semantics of the
implementation language) satisfies the initial specification.

“Posit and prove” development methods such as VDM [9] or Event-B [1] al-
low engineers to make intuitive design steps from which are generated “proof
obligations” (POs) whose discharge justifies the posited design choices. Tai-
lored automatic theorem proving tools such as those available in the “Rodin
Tools” [18], or general purpose theorem provers (TPs) such as Isabelle [16,17],
can automatically discharge a high percentage of proof obligations for industrial
scale problems; but a small percentage of a large number still leaves an unwel-
come interactive theorem proving load for industrial engineers who are neither
specifically trained as logicians nor do they obtain the same enjoyment that an
academic might from polishing off proofs. In an example from the EU-funded
DEPLOY project [24], around 500 POs were generated just to show that a model
was consistent; 80% of these were discharged automatically by the Rodin Tools
but this left the engineers facing about a hundred interactive proofs. There is
little point in arguing whether some other TP tool would discharge a larger
proportion of such POs — with a fixed set of heuristics, some POs will always
remain undischarged. This issue is delaying –and will continue to limit– wider
use of “formal methods”.

Further investigation of the hundred remaining POs does, however, offer some
more encouraging news: on examination, there were no more than five ideas
which made it easy to discharge all of the residual POs. It is this observation
–which is echoed in many other examples– that leads us to the approach being
followed in the AI4FM project. It is clear that major research progress has
been made in discovering general purpose TP heuristics; on the other hand,
undecidability results limit hubris and experience suggests that it is properties
that are specific to the data structures and functions of an application that make

2 This paper does not address the transition from requirements to formal specifi-
cations: the issues around understanding requirements are addressed in Jackson’s
“Problem Frame Approach” [8]; ways of determining specifications of control sys-
tems from requirements on overall system behaviour are considered in [14].



proofs go through. The resource that our project hopes to tap is the ability of an
expert to spot these specific properties. Having once identified them, the system
should then absorb them and use them to discharge further similar proofs. This
has two major payoffs: not only is the expert’s time not wasted performing
encores with proofs that are somehow “in the same family”; but there is also
a higher probability that proofs will be found automatically after (inevitable)
minor changes to specifications or designs.

The hypothesis of the AI4FM project is:

Enough information can be automatically extracted from an interactive
proof that examples of the same class can be proved automatically

As discussed below, this information might either be high level strategies or be
captured as lemmas.

Before moving on to our approach and a model of the proposed system,
there are a few issues worth putting to rest lest they are of concern to readers.
First and foremost, we are fully aware of the considerable power of modern
TP systems and their tactic languages: as indicated below and in a companion
technical report [22],3 the initial action with any PO is to pass it to at least
one TP system. A particularly encouraging experiment is described in Matthias
Schmalz’s ETH PhD thesis [20] where he shows that a tailored version of Isabelle
manages to discharge a higher percentage of the POs than the built-in TP tools
of the Rodin Toolset. (The case study is of significant size and is taken from a
different DEPLOY partner than the example discussed above.)

It is also worth noting some factors that must qualify reported figures about
“automatically” discharging POs. One such factor is alluded to in reporting
Schmalz’s experiment: he was very careful to split the collection of POs into
training and evaluation sets but the fact remains that Isabelle was hand tailored
to the training set. A useful view of the AI4FM hypothesis is that we are aiming
to automate that tailoring based on monitoring the activities of an expert in
discharging a small number of intransigent POs.

Another significant caveat to any claimed figures on “percentages of auto-
matically discharged POs” concerns reformulations of the models. To take one
source, in [1] there are some beautifully staged developments that are split into
many steps with the effect that the POs are relatively easy to discharge. Even
were it the case that the published developments actually represent the author’s
first attempts, it must be remembered that the author is both an expert and un-
derstood thoroughly the strengths/weaknesses of the TPs in the Rodin Tools. An
engineer hoping to deploy the same tools is neither likely to be so expert nor wish
to reformulate rather larger (than in any textbook) models to make the task of
the TP system easier. Abrial’s book is chosen for comparison because his proofs
have been, laudably, discharged using tools. One of the current authors also ex-
tols the advantages of stepwise development (see for example, [9,10,12]) so the

3 Although frequent references are made to this technical report, the current paper
should be self-contained. The longer report contains details of an example that is
large enough that it cannot be covered in a paper of this length.



question of how much reformulation is in order is clearly one of degree. Without
being able to provide precise metrics, the position taken in the AI4FM project
is that “posit and prove” developments should split a design so that each step
reflects a clear design decision. If –as often happens– that leaves undischarged
POs, the problem should be tackled by introducing concepts during theorem
proving rather than by interposing extra steps of development. (This issue is
discussed further –and illustrated– in the companion technical report [22].)

One final comment is in order: the current authors are (painfully) aware that
many POs actually represent unprovable conjectures. The role of model-checking
approaches such as “ProB” [26] in detecting mistakes is invaluable.

1.2 Tackling the challenge

The objectives of the AI4FM project were recognised by its proposers and re-
viewers alike as being “ambitious”. Of course, the objectives might not just be
ambitious — they might be unachievable. At a minimum, the project has to
design an unusual way of describing high-level strategies. Here, our experience
suggests that the design of such a “language” is more likely to succeed if it is
driven from the “state” of the language (rather than its syntax).4

A relevant experience for the current project is that which created mural [11].
A prime objective of the earlier project was to devise a style of interacting with a
TP system that kept the user fully aware of the status of a proof and able to make
any sort of forward, backward or intermediate (“cut”) step that he or she wished.
For its time, this was also considered to be ambitious. In the project that built the
mural system, we spent a long time iterating versions of its formal description; in
fact, project members role-played many versions before any thought was given
to actual implementation. The ratio of design time to (initial) implementation
was more than four to one.5 The Newcastle AI4FM team is taking a similar
approach. What follows is the n’th iteration of a model of the architecture of
a system that we are only now beginning to implement. The following sections
(2 and 3) represent an attempt to provide a readable introduction to the model
that is summarised in Appendix A — Section 4 includes a discussion of some
alternatives.

2 Organising theories

The project will only succeed if a way is found of expressing high-level strategies;
moreover, such strategies need to be generalised from instances of lower-level
steps. We expect to use a strongly declarative “language” rather than strings of
instructions to a TP system. It is argued in Section 3.1 that this will only be
possible if a “top-down” hierarchical view of proofs is taken. We anticipate that

4 Christopher Strachey argued for working out what you want to say before worrying
about how to say it.

5 An additional bonus was that the model was kept up-to-date during the evolution
of the system — it is published as [11, Appendix C].



the system will be able to track the overall process by which a user constructs
an interactive proof and that “parsing” the detail against the user’s “intent” will
be possible.

Thus we intend that our proposed system notes the intent of an expert user
so as to match this against other tasks. These ideas are described in Section 3.
The current section builds up an understanding of the architecture of the AI4FM
system in which information about proofs themselves is stored.

The ideas have been tested on a number of examples and the companion
technical report [22] contains a non-trivial development (the discussion there
and the fact that we made mistakes that were uncovered whilst discharging the
POs support the view that, although the example is smaller than the industrial
examples that are our final target, it is significantly more challenging than any
that would fit in a paper of this length).

2.1 Bodies of knowledge

The accumulated knowledge in AI4FM is stored in a collection of named bodies
(in the sense of “body of knowledge”).6

Σ :: bdm : BdId
m−→ Body

· · ·
These bodies can be related to each other in various ways — this topic is dis-
cussed in Section 3.2. There will be bodies of knowledge about general mathe-
matical theories such as set theory (cf. Section 2.2); there will also be bodies that
relate to a specific application (cf. Section 2.3). Thus far, this is a conventional
structure but it is one into which more novel concepts are embedded.

2.2 Base theories (as Body objects)

Consider, say, the Body for sequences of “locations”7 as in the model in [22,
Appendix B]. The BdId will be some memorable name such as LocSeq. It will
“use” both the theory for Loc and that for N (for indexing and the result of
len s). Within the theory, there will be a series of functions such as s(i), s1

ys2,
hd s, tl s (operators are viewed as functions written in an infix –or even mixfix–
notation). A FnDefn will contain the signature of the function and, optionally,
an explicit definition in terms of more basic operators. So, “append” might be an
operator characterised by axioms; whereas rev might be defined by a recursive
definition. Thus far:

Body :: uses : BdId -set
· · ·
functions : FnId

m−→ FnDefn
· · ·

6 Records, mappings, sets etc. are defined in VDM notation — this should present no
real hurdle but readers who want to check details are referred to [10].

7 Obviously, we intend to handle polymorphism — but this is not covered in the
current paper. The approach will almost certainly follow that worked out in [11].



FnDefn :: type : Signature
defn :

[
Definition

]
2.3 Specifications give rise to bodies

As well as general theories, we also expect each user specification to be linked
to a Body corresponding to its “state”. Something like the Overture tool [25]
will generate a Body for each specification (cf. Appendices of [22] that include
a top-level specification and two refinement steps). It is often useful to know
the problem domain to which a specification relates — for example, in the Rail
domain, frequent use is made of relations to record track layouts.

Body :: · · ·
domain : {Rail,Auto, . . .}
· · ·

In most industrial cases, the state will be defined as a record. In examples such
as those from the industrial partners in the DEPLOY project, states of 20 fields
were not unusual — and these states also tended to have lengthy invariants. It
might be worth generating theories for any separable sub-states in the sense that
data type invariants and/or operations force some fields to be grouped together
— other than these constraints, models should be split as far as is possible —
each distinct record type will be translated into a body.

Within a body for a specification, a proof obligation generator (POG) will
place a Conjecture for each PO about the consistency (e.g. invariant preserva-
tion) of that single specification. Proof obligations will also be generated corre-
sponding to the claim that one model reifies another (obviously this has to be
triggered by the claimed reification link).

2.4 Conjectures

The information in a Body that is of use in proofs is the collection of formal
results that are built up over the lifetime of that body.

Body :: · · ·
theory : ConjId

m−→ Conjecture
· · ·

When first generated, a Conjecture is actually a proof task. Each such conjecture
has hypotheses and a goal both containing judgements. A Judgement can be a
sequent or an (in-)equation. In addition there can be any number of (attempts
at) justifications. Thus:

Conjecture :: · · ·
hyps : Judgement∗

goal : Judgement

justifs : JusId
m−→ Justification

· · ·



Judgement = Sequent | Equation | Ordering | · · ·
So, for example, s ∈ LocSeq ` rev(rev(s)) = s is likely to be a judgement
accompanied by a proof; other judgements will be axioms.

2.5 Justifications

Turning to Justification, notice that it is explicitly envisaged that there can be
multiple attempts to justify a proof task. When a conjecture is first generated,
it will have no justifications. A user might start one proof Attempt , leave it aside
and try another, then come back and complete the first proof.

Many conjectures will not contain proofs as such. There might for example be
an axiom that hd ([a] y s) = a and a proof of rev(rev(s)) = s. Unsurprisingly,
a flag Axiom will be used to mark axioms. Another way in which a justification
need not be (a graph of) a logical proof is that it might be copied from some
separate Trusted source.

In practice, TP tools such as Isabelle and Z/EVES are powerful enough that
a user will hardly ever interact at the level of the (natural deduction) laws of
the logic itself. So, in fact, the most prevalent examples of Justification ought
come from the underlying theorem prover. Automatic use of a TP system will
be recorded as an instance of Tool (and might include the configuration used).
Other obvious examples of Tool might record the use of a SAT/SMT tool (which
could also be used to look for counter examples if the first attempt at proof fails).

Justification = Axiom | Trusted | Tool | Attempt

The idea of Attempt is to be able to accommodate (manual) proof steps.
Attempt :: rule : ConjId

hyps : ConjId∗

subst : Term
m−→ Term

sub-probs : ConjId -set

Notice an attempt corresponds to one step in a proof: collecting a whole proof
requires tracing the attempts at the sub-conjectures. Thus the notion of whether
a proof is complete (in the sense of (transitively) relying only on axioms) is a
complex recursive predicate. A low-level instance of Attempt might record that
the (rule) on which it is based is “or elimination”. More interesting would be
the use lemmas.

3 Strategies

As indicated, the aim of the AI4FM project is to support users with the dis-
charge of industrial scale POs. The way in which we expect to extract strategic
insight from proofs –possibly undertaken by experts– is described in Section 3.1;
selection and replay (with modifications) is covered in Section 3.2. First, the
data structures are described.

Strategies reside in the relevant Body :
Body :: · · ·

strats : StrId
m−→ Strategy



A low level strategy might split a problem into sub-cases; another could
reduce an expression to a normal form; an important collection of strategies will
be for induction; an interesting strategy might shift the representation of an
object of interest to a different body of knowledge.

We have for a long time within the AI4FM project referred to the “why” of
strategies and conjectures (and this is the reason for the use of this word in the
title of the paper). The point is that it is easier to achieve a high level of strategy
re-use if the intent is captured rather than if only a transcript is recorded. The
initial conjectures come from POG and their source will contain the name of the
kind of proof obligation. Conjectures that are generated as sub-problems by a
strategy will be marked with the Why value of the strategy.

Conjecture :: source : Origin |Why
· · ·

Examples of values for Why are given in Section 3.1 (and more are listed in [22]).
The set will never be closed so that a user can always add a new concept.

Strategic information needs to represent both “and” and “or” situations. The
“or” function is represented by having alternative strategies. For example, we
do not explicitly say that three strategies whose StrIds are StructuralIndn,
NPeanoIndn and NCompleteIndn are options — it’s just that their intent
fields are all likely to be marked as something like HandleUniversal. The
selection between alternatives is, in a sense, underneath the covers for the user
(it might give rise to limited parallelism).

An “and” split in a Strategy records that, in order to justify a conjecture,
certain other conjectures must be discharged (although in some cases it will
just be a reformulation and generate only one sub-task — e.g. contrapositives
of implications, use of an isomorphic model — at the leaves of a strategy there
are no sub-tasks). Just as in LCF-like systems, the flip side of split is the justif
which proves that the sub-goals (when discharged) justify the original goal.

Strategy :: intent : [Why ]
split : Conjecture → Conjecture-set
justif : JusId
· · ·

Notice that split is a general function, not a mapping. One possibility for
the split field is that it could contain a text in a language that is interpreted. In
contrast, it fits our top-down view better to have high-level derived rules — see
the discussion of lemmas in the next sub-section.

After a split is made, the theorem prover of choice will be triggered on each
of the generated sub-goals. If they are all discharged, this reinforces the strategy
used; if the user hits a dead-end, the likelihood of trying that strategy in similar
circumstances is reduced. Furthermore, the expert has to backtrack to some
other decision in the proof process.

3.1 Extracting strategies

As indicated in Section 1.1, over and above general purpose heuristics, the key
resource that AI4FM hopes to exploit is to garner information from interactive



proofs. It is convenient to talk about this in terms of the interactive proof being
undertaken by an expert but it might also be the case that an engineer who is
working on PO discharge behaves as the expert — perhaps after some reflection.

The following diagram shows how AI4FM is intended to snoop on the inter-
action of the expert with the theorem proving system. The symbols stand for
the expert (depicted by a lightbulb for inspiration), the TP system (a cogwheel
around the turnstile symbol) and at the top of the diagram AI4FM (marked by
our trademark for recycling deductions). The basic two way interaction between
the expert and the TP system is marked by the horizontal arrows.

(1)

(2)

(3)(4)

The numbered arcs showing interactions with AI4FM are explained as fol-
lows:

1. Having a record of why a conjecture is being tackled, the system can attempt
to “parse” any interactions initiated by the expert against existing strategies.

2. The expert will be asked to name any new strategies and be invited to mark
identifying features.

3. The system can note undischarged goals, record success/failure of strategies;
and record the lemmas that are used.

4. The system can suggest strategies to the expert.

This illustrates the primary way in which AI4FM will accrete information.
Notice that the aim is to mine the proof process which we feel has far more
information than just finished –and possibly polished– proofs.

One point that we feel is crucial is the importance of starting the analysis
of what the user (expert) is doing from the initial goal (the “top” of the proof):
knowing why a conjecture arose is the key to getting an appropriate “parse” of
the steps made; looking at the steps alone is a much harder way of determining
an expert’s intent.8

8 Hearing a seminar on programs that “understand” music prompted the analogy of
trying to guess the form of a piece of music a bar at a time versus trying to “parse”
it against some expected structure(s).



A failure to discharge a PO will be apparent when one or more conjectures
cannot be proved either by the underlying theorem proving systems or any of the
available strategies. When such an impasse is reached, an expert might introduce
a lemma. Alternatively, the expert might respond by making a different choice
in some step of the proof. For now, we assume that this step is captured without
immediate generalisation (cf. Section 3.2). The expert is prompted to provide a
name (Why) for the new idea. In some cases, it will be possible for AI4FM to
track that a new strategy specialises an existing one but in the worst case it is
certainly worth having the option to add this relationship by hand.

It is also useful to organise a “taxonomy” of strategies. The idea is perhaps
best illustrated by an example:

NPeanoIndn specialises NIndn
NCompleteIndn specialises NIndn
NIndn specialises Indn
StructuralIndn specialises Indn

So the final field of Strategy is:
Strategy :: · · ·

specialises : [StrId ]

There are also what might be thought of as “meta-strategies”. One of these
is referred to by the second author as “zooming”. Given, for example (in tech-
nical report [22, B.1]), a proof obligation that involves expressions such as
pre-NEW 0(s, σ) there are three levels at which the PO can be passed to a the-
orem prover: as is (with nothing expanded); expansion of the specific predicate
pre-NEW 0 (about which there are likely to be no lemmas) to terms/operators
of set theory; or even an expansion of everything down to predicate calculus.
In general, proofs are clearest to a user if they can be conducted with least ex-
pansion. In fact, a genuine expert will often “anti-zoom” and prove results at a
more general level than their original expression.

A frequent contribution from an expert is to spot that a lemma will provide
the clue that makes automatic theorem proving succeed. This approach is seen
most clearly in the “waterfall” of ACL2 [15] but it also applies to LCF-style
theorem provers such as Isabelle. Lemmas essentially bundle up steps in an
argument so that one application of a strategy moves a proof many steps towards
its goal. In this section, we assume that lemmas are captured in exactly the form
in which they are used; Section 3.2 indicates one source of generalisation. We are
also investigating other ways of spotting generalisations at the point of lemma
capture. A way of relating bodies of knowledge is described in the next section
and this is one technique by which patterns between lemmas can be utilised.

3.2 Replaying strategies

For some specific Conjecture, a user might wish to provide a justification. There
is, in fact, rather more behind this comment than someone schooled in say Is-
abelle might expect. First of all, AI4FM will provide many ways of viewing the
outstanding proof tasks so that, for example, a user can see all of the unjustified



leaves of the tree from some specific PO. It is also envisaged that a user can
opt to provide new proofs for already justified results — this is why Conjecture
contains a map (justifs) to any number of justifications.

The description that follows, however, assumes a single point of focus: a
Conjecture. If the theorem prover of choice can discharge the conjecture auto-
matically, the justification is recorded as a Tool transcript. The more interesting
case for AI4FM is where automatic proof fails.

The following diagram shows how AI4FM can assist the interaction of an
engineer (marked by a hardhat) with a TP system.

(1)(3)

(2)(4)

?

Here again, the extra indexed arcs are explained:

1. The system can replay (possibly modified versions of) strategies that fit the
context and have been previously generated in expert mode. As explained
below, an attempt is made to order the use of options based on previous
success/failure.

2. Success/failure of strategies is noted both to trigger a move to the next
option and to adjust weights that will affect future choices. If necessary,
failure of the final option will cause the system to backtrack to an earlier
point in the proof tree.

3. The system must keep the user informed (especially about backtracks); it
might also ask about lemmas.

4. The engineer might be able to assist if automatic attempts (just) fail; alter-
natively, there might be a need to bring an expert on line.

Given a collection of strategies, we need a way of selecting the one that is
most likely to succeed. There are two sources of information. The provenance
information in the source field of Conjecture is discussed above; in addition to the
fields listed at the beginning of Section 2.4, a Conjecture will contain information
about its features:

Conjecture :: · · ·
match : Features



A putative shape of Features is given in Appendix A — the final list will be
chosen after experimentation. The order in which strategies are tried is governed
by its Score and this is an area where we hope to use some form of “machine
learning”. It is therefore crucial that the success or failure of strategies is recorded
to adjust the weights in the rank function

Strategy :: · · ·
rank : Conjecture → Score
· · ·

Another way of ordering strategies is based on the assumption that the most
specific strategy should be tried first and a specialises field is added to Strategy
to locate the next more general strategy:

Strategy :: · · ·
specialises : [StrId ]

In this case, failure prompts trying the next more general strategy.

A stored strategy might well rely on a lemma and the exact form of the
lemma used in the situation from which the strategy was extracted might not
fit the context where the strategy is being replayed. So far, we have considered
two ways of evolving (“educing”) lemmas: one involves looking in related bodies
of knowledge; the other attempts to infer a modified lemma from contextual
information.

With regard to relationships between bodies of knowledge, Σ contains:
Σ :: · · ·

bdrels : (BdId × Relationship × BdId)-set

which stores relationships between bodies of knowledge. Like Why itself, this
will have to be expandable by the user. Some examples include:

Relationship = Specialisation | Morphism | Isomorphism |
Inherits | Sub | Similarity | Difference | · · ·

AI4FM might, for example, have some abstract items in Body such as Larch’s
“collector” [7]; sets, sequences and maps would all then be specialisations of
collector. Another abstract item might be “inductable” where the more gen-
eral knowledge about setting up inductive proofs would reside. Morphism and
Isomorphism will be used for precise mathematical relationships — the latter
where results can be used in either direction. Similarity will be for less precise
connections (fuzzy matches).

To begin with a low-level example of how the relationships between bodies
can be used, suppose a strategy for rearranging operators was applied on set
operators and the associativity of union was used, then application of the same
strategy on sequence operators might generate the need for a lemma for the
associativity of concatenation. In this case, one would expect that such a lemma
would already be in the appropriate Body . A more interesting example might be
ways of creating witnesses for existential quantifiers.

The approach of evolving a lemma from the originating proof to match a new
context looks to be feasible. Comparing the hypothesis and goals of the original
proof task with the lemma that was generated in expert mode ought to provide



enough information to tailor a new lemma that fits the context in which the
containing strategy is replayed.

If all options for a strategy have proved fruitless, AI4FM will be able to
locate a higher point in the “proof tree” and try alternatives from there. The
balance of exploring breadth versus resorting to backtracking will have to await
experiments.

4 Status and way forward

As indicated in Section 1.2, we have already spent a lot of time discussing the
architecture of our proposed system in terms of a model whose current version is
in Appendix A. Some of the issues already resolved are outlined in Section 4.2;
Section 4.3 sketches our immediate priorities; the first sub-section outlines our
experiments with case studies.

4.1 Outline of case studies

As has been made clear above, the model of the architecture described in the
preceding sections and summarised in Appendix A has evolved over experiments
with case studies. Experience has shown that relatively little can be learnt from
small examples and that many issues only become clear when non-trivial case
studies are considered. The specification and development in [22] is not as large
as those met –for example– in the DEPLOY project (see [19]) and it has been
important that such industrial applications are kept in mind. Apart from the
experience of working closely with industrial teams, the authors have direct
writing experience of specifications and developments for applications like cash
cards, file stores and systems that control access to secure sites.

The management of a free storage “heap” is a well understood computing
problem and the development in [12, §7] provided a good starting point for a
useful case study.9 The heap example is too large to cover in detail in a paper of
this length which is why a companion technical report [22] is being made available
along with all of the formal material in machine readable form.10 Deviations from
the original development of [12, §7] are discussed in [22, Appendix B.3.6]. That
report also contains additional observations that come from other case studies.

One thing that has come as a surprise is the degree of difficulty in handling
partial terms efficiently in Isabelle. Our surprise might puzzle a reader who
knows that the first author has long argued for the use of a “Logic of Partial
Functions” [2]; this is clearly an area for more investigation and Schmalz’s [20]
might offer the approach that fits most closely with Isabelle.

9 In fact, most of the chapters in [12] are non-trivial and usable as case study material.
10 We have actually undertaken the proofs in both Z/EVES and Isabelle/HOL and the

differences are discussed in [22].



4.2 Alternatives already considered

There are some ideas that we have considered but have yet to build into the
model. Two such issues are mentioned here: “analysing proof failures” and
“recording negative results”. Our project colleagues in Edinburgh have pioneered
general ideas about analysing proof failures and more specifically about “rip-
pling” [3]. Superficially, it would be easy to include one or more indicators such
as StuckInduction among the values of Why but further investigation and
experimentation is required to check that this provides a convenient bridge to
established –and new– ways of analysing failure.

Prompted by an interesting discussion with Aaron Sloman, we experimented
with the idea of recording in the model what might be termed “negative re-
sults”. The point being that knowing –for example– that, while set union and
list concatenation both enjoy properties such as associativity, the latter is not
commutative (in general) might provide important clues when trying to replay
a strategy from one context in a different body. This idea remains under consid-
eration but for now it is assumed that such negative information is stored as a
Difference relationship in bdrels.

Probably the biggest issue in our discussion on the architecture has been the
ways in which one can view the design of a “strategy language”. To oversimplify,
one can contrast “bottom up” approaches that try to extend the vocabulary of
existing tactic languages with the “top down” approach followed in this paper.
Of course, the ideal is that these approaches converge and it is clear that the
split field of Strategy in Appendix A could contain texts of an extended tactic
language. As indicated in Section 3.1, a strong argument for the top-down ap-
proach is that making sense of (“parsing”) interactions in expert mode is only
possible if the system can track the user’s overall objective. It must however be
conceded that it would be simpler to capture the tactic-level steps that an expert
makes than it will be to parse these against high-level goals. The idea of taking
the lower-level approach and adding annotations to such scripts is viewed as a
fall-back position; our immediate plan is to tackle the high-level objective.

The model in Appendix A does not order sub-goals in the split field of
Strategy . This assumes that only graph shape matters but we accept that there
are cases where order might be important. In fact, we have considered the idea
of time stamping each Conjecture. We have yet to build this into the model (one
can always write a function that drops this information where not needed).

Another option in the model is to be able to locate instances of the use
of strategies — but, for the time being at least, the pointers are in the other
direction.

As was found in the mural project, records (in the VDM sense) can be dif-
ficult in that there is really a different theory of selectors and constructors for
each record shape. Records are so ubiquitous that we have to do something
for them and we do not favour expanding out “axioms” for all of the construc-
tors/selectors. One reason for preferring some built-in handling of records is that
theorem provers can actually suffer from an excess of lemmas: the irrelevant clut-
ter makes searching inefficient or even useless.



4.3 Next steps

Our immediate activity is to tension the model in Appendix A against more non-
trivial examples. A trade-off then has to be made as to the point in time when
greater productivity can be achieved by building the model into our on-going
tool support activities. The balance here is that it takes almost no time to revise
the model on paper but somewhat longer to revise the Eclipse-based tools that
are the current work of (mainly) the third author. The first version of an Eclipse
interface to Isabelle has been released [21] and it provides an integration platform
for our tools and experiments which gather information from interactive proofs.

Even once we switch to slightly slower revision iterations involving the tools,
it is our intention to follow the good practice in the mural project and to keep
the formal model up to date.
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A Summary of “model”

Σ :: bdm : BdId
m−→ Body

bdrels : (BdId × Relationship × BdId)-set

Body :: uses : BdId -set
domain : {Rail,Auto, . . .}
functions : FnId

m−→ FnDefn

theory : ConjId
m−→ Conjecture

strats : StrId
m−→ Strategy

FnDefn :: type : Signature
defn :

[
Definition

]
Conjecture :: source : Origin |Why

hyps : Judgement∗

goal : Judgement

justifs : JusId
m−→ Justification

match : Features

Judgement = Sequent | Equation | Ordering | · · ·

Justification = Axiom | Trusted | Attempt | Tool

Attempt :: rule : ConjId
hyps : ConjId∗

subst : Term
m−→ Term

sub-probs : ConjId -set

Tool = · · ·

Could include info about blocks: ConjId -set
Strategy :: intent : [Why ]

split : Conjecture → Conjecture-set
justif : ConjId
rank : Conjecture → Score
specialises : [StrId ]

Features :: mainTps : BdId -set
mainFns : FnId -set
other : · · ·

Origin = Token

Why = Token

Relationship = Specialisation | Morphism | Isomorphism |
Inherits | Sub | Similarity | Difference | · · ·
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